About 52,100,000 results
Open links in new tab
  1. 请问机器学习中bagging和boosting两种算法的区别是什么? - 知乎

    Boosting流程图 3.Bagging、Boosting二者之间的区别 3.1 样本选择上 Bagging:训练集是在原始集中有放回选取的,从原始集中选出的各轮训练集之间是独立的。 Boosting:每一轮的训练集不变,只是 …

  2. 为什么没有人把 boosting 的思路应用在深度学习上? - 知乎

    (5)Boosting算法对于样本的异常值十分敏感,因为Boosting算法中每个分类器的输入都依赖于前一个分类器的分类结果,会导致误差呈指数级累积。 而用于深度学习模型训练的样本数量很大并且容许 …

  3. R语言机器学习实战系列教程 - 知乎

    R语言机器学习算法实战系列(一)XGBoost算法+SHAP值(eXtreme Gradient Boosting) R语言机器学习算法实战系列(二) SVM算法+重要性得分(Support Vector Machine) R语言机器学习算法实战 …

  4. 为什么说bagging是减少variance,而boosting是减少bias? - 知乎

    是前n-1步得到的子模型的和。 因此boosting是在sequential地最小化损失函数,其bias自然逐步下降。 但由于是采取这种sequential、adaptive的策略,各子模型之间是强相关的,于是子模型之和并不能显 …

  5. Boosting 和 Adaboost 的关系和区别是什么? - 知乎

    Nov 20, 2015 · boosting 是一种将弱分类器转化为强分类器的方法统称,而adaboost是其中的一种,采用了exponential loss function(其实就是用指数的权重),根据不同的loss function还可以有其他算 …

  6. adaboost为什么不容易过拟合呢? - 知乎

    然而根据这一理论,Breiman设计了另一种Boosting算法arc-gv,最小训练Margin更小了,但实验效果比AdaBoost差了很多。 于是乎Breiman的结论是,这个用训练Margin来刻画泛化错误整个就是不对的 …

  7. 集成学习中bagging,boosting,blending,stacking这几个 ... - 知乎

    这四个概念都是集成学习中非常重要的概念,只不过侧重的方面有所不同. bagging/boosting强调 抽取数据的策略.两者都采取随机有放回取样 (random sampling with replacement)的方式抽取数据,不同的是 …

  8. 如何ensemble多个神经网络? - 知乎

    (图片来自 Bagging, boosting and stacking in machine learning,侵删) 方法主要有以下2种: 1. Bagging (bootstrap aggregating) : 即再取样 (Bootstrap) ,在每个样本上训练出来的模型取平均,从 …

  9. 为什么xgboost/gbdt在调参时为什么树的深度很少就能达到很高的精 …

    ):Boosting主要关注降低偏差,因此Boosting能基于泛化性能相当弱的学习器构建出很强的集成;Bagging主要关注降低方差,因此它在不剪枝的决策树、神经网络等学习器上效用更为明显。 随机 …

  10. 无痛理解Boosting:GBDT

    那么回到boosting中,我们已知 ,下一步的偏移量就应该是 这不是简单的导数,而是一个泛函。尽管如此,我们可以直接把它当做导数,在已知 的表达式的情况下很容易计算。 我们拿回归任务验证一下。 …